UG 4th Semester Examination - 2025 (Under NCCF)

Award: - B.Sc

Discipline : Mathematics Course Type : MNC-4

Course Code: BSCMTMMN401

Course Name: Abstract Algebra and Linear Algebra-II

Full Marks - 70 (Regular)

Time - 3hours

1. Answer any five questions

 $1\times5=5$

- a) Define semigroup.
- b) Test whether the permutation $\begin{pmatrix} 123456 \\ 431265 \end{pmatrix}$ is odd or even.
- c) Give an example of a commutative subgroup of a non-commutative group.
- d) Give an example of a commutative group which is not cyclic.
- e) When is a matrix said to be diagonalizable?
- f) Let $S = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 2\}$. Examine whether S is a subspace of the vector space \mathbb{R}^3 .
- g) Define a linear transformation.
- h) State Cayley-Hamilton theorem.

2. Answer any ten questions

 $2 \times 10 = 20$

- a) If in a group (G, *), a * c = b * c holds for all $a, b, c \in G$, then prove that a = b.
- b) Show that a group G is abelian if $(ab)^2 = a^2b^2$, $\forall a, b \in G$.
- c) Give an example of an infinite group of which every element is of finite order.
- d) Show that the set E of even integers is a subgroup of the additive group (Z,+) of integers.
- e) If G is a group and H is a subgroup of index 2, prove that H is a normal subgroup of G.
- f) Prove that any field is an integral domain.
- g) Show that the ring of integers (Z, +, .) is not a field.
- h) Show that the vectors $\{(2,-3,1),(3-1,5),(1,-4,3)\}$ are linearly independent.
- i) Show that the set $S\{(1,0,0),(1,1,0),(1,1,1),(0,1,0)\}$ spans the vector space \mathbb{R}^3 , but is not a basis.
- j) Determine the subspace of \mathbb{R}^3 spanned by the vectors (1,2,3), (3,1,0).
- k) Let $V = P_2(IR)$, the vector space of all real polynomials of degree at most 2. Prove that the mapping $D: V \to V$ defined by $Df(x) = \frac{d}{dx} f(x)$, $f(x) \in V$ is a linear mapping.
- l) Let V and W be vector spaces over a filed F and $T:V \to W$ be a linear mapping. Prove that $T(\theta) = \theta'$, where θ and θ' are null elements of V and W respectively.
- m) Define Kernel of a linear transformation.
- n) Prove that the linear mapping $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by $T(x, y, z) = (x + y, y + z, z + x), (x, y, z) \in \mathbb{R}^3$ is one -to -one and onto.

3. Answer any five questions.

5×5=25

- a) (i) Define Dihedral group with an example.
 - (ii) Give an example of an abelian group which is not cyclic

3+2

- b) Let G be a group. Prove that (i) $(a^{-1})^{-1} = a, \forall a \in G$ (ii) $(ab)^{-1} = b^{-1}a^{-1}, \forall a, b \in G$.
- 2+3
- c) Prove that the roots of the equation $x^6-1=0$ form a subgroup of the multiplicative group of non-zero complex numbers. Is the subgroup cyclic? Justify your answer.
- d) Show that (Z,+,.) is a ring with respect usual addition and scalar multiplication.
- e) Diagonalize the matrix: $A = \begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{pmatrix}$.
- f) Find a basis and dimension of the subspace W of \mathbb{R}^3 , where

$$W = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}.$$

- g) Find eigenvalues and eigenvectors of the following matrix: $\begin{pmatrix} 3 & -2 & 0 \\ -2 & 3 & 0 \\ 0 & 0 & 5 \end{pmatrix}$
- h) A mapping $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by $T(x,y,z) = (x+y+z, 2x+y+2z, x+2y+z), (x,y,z) \in \mathbb{R}^3$. Prove that T is a linear mapping. Find Ker T and the dimension of Ker T.

4. Answer any two questions:

 $10 \times 2 = 20$

- a) (i) Show that the set $S = \{a + b\omega : a, b \in \mathbb{R}\}$ forms a field with respect to usual addition and multiplication of complex numbers, where ω is the cube root of unity and \mathbb{R} is the set of all real numbers.
 - (ii) If (G, o) be a finite group of even order. Prove that G contains an odd number of elements of order 2.

5+5

- b) i) Prove that every subgroup of a commutative group G is a normal subgroup of G.
 - ii) Prove that the intersection of two normal subgroups of a group G is normal in G.
 - iii) Show that the matrix $\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ is not diagonalisable.

3+3+4

c) i) Determine the linear mapping $T: \mathbb{R}^3 \to \mathbb{R}^3$ which maps the basis vectors

(0,1,1), (1,0,1), (1,1,0) of \mathbb{R}^3 to the vectors (2,0,0), (0,2,0), (0,0,2) respectively. Find Ker T and Im T. Verify that $\dim \ker T + \dim \operatorname{Im} T = 3$.

- ii) Determine whether the vectors $\{(1,1,2),(3,4,7),(5,3,1)\}$ form a basis of \mathbb{R}^3 or not.
- iii) Use Cayley-Hamilton theorem to find A^{-1} , where $A = \begin{pmatrix} 2 & -7 \\ -1 & 3 \end{pmatrix}$. 5+3+2

—о—