Total Pages–2 KNU/2025/MDC201

UG 2nd Semester Examination - 2025 (Under NCCF)

Award: B.Sc Discipline: Mathematics Course Type: MDC 2

Course Code: MDC 201

Course Name: Mathematical Science

Full Marks - 35

1. Answer any five questions:

 $1\times5=5$

- a) Find the conjugate of $\frac{1}{(1-i)^2}$.
- b) If $z = \vec{z}$ then z is purely imaginary. Justify the statement.
- c) If $\vec{a} = (-2\hat{i} + 3\hat{j} + 5\hat{k})$, $\vec{b} = (\hat{i} + 2\hat{j} + 3\hat{k})$, $\vec{c} = (7\hat{i} \hat{k})$ then show that the vectors are collinear.
- d) Which conic section is formed when $\Delta \neq 0$ and $D = ab h^2 = 0$ in the general second-degree equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$?
- e) In how many ways can 6 boys form a ring?
- f) Find the order and degree of the differential equation $\frac{d^2y}{dx^2} = \left(1 + \frac{dy}{dx}\right)^{\frac{5}{2}}$.
- g) Two coins are tossed at a time. Find the probability of getting one head and one tail.
- h) Find the unit vector parallel to the resultant of two vectors $(2\hat{i} + 5\hat{j} \hat{k})$ and $(\hat{i} \hat{j} \hat{k})$.

2. Answer any five questions.

 $2 \times 5 = 10$

- a) Compute the term independent of x in the expansion of $\left(x^2 + \frac{1}{x}\right)^9$.
- b) Find the angle between the two vectors $\vec{a} = (6\hat{i} + 2\hat{j} + 3\hat{k})$ and $\vec{b} = (2\hat{i} 9\hat{j} + 6\hat{k})$.
- c) Two unbiased dice are thrown simultaneously. Find the probability that the sum of the numbers on the faces is 8.
- d) If the events A and B are independent and P(A)=2/3, P(B)=1/3 then find P(A+B).
- e) If $|\vec{a}|=3$ and $|\vec{b}|=4$ then find the values of the scalar c for which the vectors $\vec{a}+c\vec{b}$ and $\vec{a}-c\vec{b}$ are perpendicular to each other.
- f) Prove that $\frac{{}^{n}C_{r}}{{}^{n}C_{r-1}} = \frac{n-r+1}{r}$.
- g) Determine the differential equation whose primitive is $y = (a + bx)e^{3x}$, where a, b are arbitrary constants.

h) A parabola has the equation $(y-k)^2 = 4a(x-h)$. If the focus of the parabola is at (3,2) and the directrix is the line x = -1, what are values of h, k and a?

3. Answer any two questions.

 $5 \times 2 = 10$

a) Find the eccentricity, foci and directrices of ellipse $9x^2 + 25y^2 = 225$.

1+2+2

- b) Show that the set of vectors $(2\hat{i}+3\hat{j}-\hat{k})$, $(-4\hat{i}+2\hat{j}-6\hat{k})$, $(5\hat{i}-4\hat{j}+9\hat{k})$ are linearly dependent.
- c) i) How many different factors can 2160 have?
 - ii) How many words can be made using all the letters in the word **MONDAY**? How many of them begin with **M** and do not end with **Y**? 2+3
- d) Solve: $(x^2y 2xy^2)dx + (3x^2y x^3)dy = 0$.

4. Answer any one question.

 $10 \times 1 = 10$

- a) i) If $\vec{\alpha} = (\hat{i} + \hat{j} 2\hat{k})$, $\vec{\beta} = (-\hat{i} + 2\hat{j} + 3\hat{k})$, $\vec{\gamma} = (5\hat{i} + 8\hat{k})$ then find c and d such that $(\vec{\gamma} c\vec{\alpha} d\vec{\beta})$ is perpendicular to both $\vec{\alpha}$ and $\vec{\beta}$.
 - ii) Find the equation to the circle which passes through the points (3,4) and (3,-6) and which has its centre on the straight line 2x+3y=3.
- b) i) Show that the product of all values of $(1 + \sqrt{3}i)^{\frac{3}{4}}$ is 8.
 - ii) Find the value of k such that

$$f(x) = \begin{cases} kx(1-x) ; if \ 0 < x \le 1 \\ O ; otherwise \end{cases}$$

is a possible probability density function. Also compute $P\left(x > \frac{1}{2}\right)$. 5+(2+3)

----0----