UG 2nd Semester Examination - 2025 (Under NCCF)

Award: B.Sc

Discipline : Mathematics Course Type : MNC-2

Course Code: BSCMTMMN201

Course Name : Linear Algebra-I, Ordinary Differential Equations & Vector Calculus

Full Marks - 70 Time - 3Hours

1. Answer any five questions:

 $1\times5=5$

- a) Let $A = \begin{pmatrix} 1 & 3 \\ 4 & 5 \end{pmatrix}$, find the eigen values of A^3 .
- b) Find α such that the differential equation $\left(\frac{1}{x} + x^{\alpha}y^{4}\right) dx = y^{3}x^{\alpha+1}dy$ is exact.
- c) Solve the differential equation $p^2 + 2xp 3x^2 = 0$, $p = \frac{dy}{dx}$.
- d) Find the solution of the differential equation : $(D^4 + D^3 4D^2 4D)y = 0$, $D = \frac{d}{dx}$.
- e) If $\overline{f(t)}$ has a constant magnitude, show that $\overline{f(t)}$ is perpendicular to $\frac{d\overline{f(t)}}{dt}$.
- f) When is a matrix said to be singular? Give an example.
- g) Give an example of skew symmetric matrix.
- h) Find the equation of the tangent plane to the surface xyz = 4 at the point (1,2,2).

2. Answer any ten questions.

 $2 \times 10 = 20$

- a) Verify Cayley Hamilton Theorem for the matrix $A = \begin{pmatrix} 1 & 2 \\ -2 & 3 \end{pmatrix}$.
- b) Show that the system of equations x + 2y z = 5; 3x y + 2z = 3; ax + y + z = 2a have a unique solution if $a \ne 4$.
- c) Reduce the equation $y = 2px + y^2p^3$ to Clairaut's form.
- d) Find the solution of the initial value problem, $y \frac{d^2 y}{dx^2} + 3 \left(\frac{dy}{dx} \right)^2 = 0$, y(0) = 1, $\left(\frac{dy}{dx} \right)_{x=0} = 6$.
- e) Find the Wronskian of a pair of linearly independent solutions of $\frac{d^2y}{dx^2} + 4y = 0$.
- h) Solve; $(D^2 4)y = e^{2x} + 3x$, where $D \equiv \frac{d}{dx}$.
- g) Solve: $\sin x \frac{dy}{dx} y \cos x + y^2 = 0$.
- h) Find the curve which satisfies the equation $\frac{dy}{dx} = \frac{1+y^2}{xy}$ and passes through (1,0).
- i) Find the volume of the parallelopiped whose edges are $\vec{a} = 2\hat{i} 4\hat{j} + 5\hat{k}$, $\vec{b} = \hat{i} \hat{j} + \hat{k}$ and $\vec{c} = 3\hat{i} 5\hat{j} + 2\hat{k}$.

- j) If $\vec{\alpha} = (2y+3)\hat{i} + xz\hat{j} + (yz-x)\hat{k}$, evaluate $\int \vec{\alpha} \cdot d\vec{r}$ over C, from t=0 to t=1 Where C is the curve $x=2t^2$, y=t, $z=t^3$.
- k) Express $A = \begin{bmatrix} 4 & 5 & 1 \\ 3 & 7 & 2 \\ 1 & 6 & 8 \end{bmatrix}$ as the sum of a symmetric and a skew symmetric matrix.
- l) Let $f = x^3 + y^3 + z^3$, then find the directional derivative of f at (1,-1,2) in the direction of the vector $\hat{i} + 2\hat{j} + \hat{k}$.
- m) If $\vec{r} = 3t \,\hat{i} + 3t^2 \,\hat{j} + 2t^3 \hat{k}$ find the value of $\left[\frac{dr}{dt}, \frac{d^2r}{dt^2}, \frac{d^3r}{dt^3} \right]$.
- n) Find unit normal to the surface $-x^2yz^2 + 2xy^2z = 0$ at the point P(1,1,1).

3. Answer any five questions:

 $5 \times 5 = 25$

- a) Find the eigen values and eigen vectors of the matrix $\begin{bmatrix} 4 & -4 & 2 \\ 2 & -2 & 2 \\ 0 & 0 & 1 \end{bmatrix}$.
- b) Apply the method of variation of parameters to solve $\frac{d^3y}{dx^3} y = \frac{2}{1 + e^x}$.
- c) Solve the total differential equation $z^2 dx + (z^2 2yz)dy + (2y^2 yz zx)dz = 0$.

Solve: $\frac{dy}{dx} + \frac{y}{x} \log_e y = \frac{y}{x^2} (\log_e y)^2$.

- d) Solve: $\frac{dx}{dt} 7x + y = 0$; $\frac{dy}{dt} 2x 5y = 0$.
- e) Find the vector equation of a plane containing two parallel straight lines $\vec{r} = \vec{a} + t\vec{c}$ and $\vec{r} = \vec{b} + s\vec{c}$ (*t* and *s* are scalars).
- f) Show that the matrix $\begin{bmatrix} 2 & 0 & 1 \\ 3 & 3 & 0 \\ 6 & 2 & 3 \end{bmatrix}$ is non-singular, hence express it as a product of elementary matrices.
- g) Show that the general solution of the differential equation $\frac{dy}{dx} + py = Q$ can be written in the form $y = \frac{Q}{p} e^{-\int P dx} \left[\int e^{\int P dx} d\left(\frac{Q}{P}\right) + C \right], \text{ where } P \text{ and } Q \text{ are functions of } x \text{ and } C \text{ is an arbitrary constant.}$
- h) Solve $(D^2 + a^2) y = \sec(a x)$, $D \equiv \frac{d}{dx}$.

4. Answer any two questions.

10×2=20

a) i) Find the row -reduced Echelon form of the matrix $\begin{bmatrix} 2 & 0 & 4 & 2 \\ 3 & 2 & 6 & 5 \\ 5 & 2 & 10 & 7 \\ 0 & 3 & 2 & 5 \end{bmatrix}.$

ii) Solve:
$$\frac{dx}{z(x+y)} = \frac{dy}{z(x-y)} = \frac{dz}{x^2 - y^2}$$
.

- b) i) Solve the differential equation $\frac{d^2y}{dx^2} \frac{1}{x}\frac{dy}{dx} 3x^2y = 4x^2\sin(x^2).$
 - ii) Show that div $(\vec{E} \times \vec{F}) = \vec{F} \cdot curl \vec{E} \vec{E} \cdot curl \vec{F}$. 5+5
- c) i) Find the algebraic and geometric multiplicities of each eigen value of the matrix

$$\begin{bmatrix} 1 & -1 & 0 \\ 1 & 2 & -1 \\ 3 & 2 & -2 \end{bmatrix}$$

ii) In the differential equation Mdx + Ndy = 0, if $Mx + Ny \neq 0$ and the equation is homogeneous then show that $\frac{1}{Mx + Ny}$ is an integrating factor of the equation.

Hence solve:
$$(x^2y - 2xy^2)dx - (x^3 - 3x^2y)dy = 0$$
. 4+2+4

----0----