KNU/2025/BSCCEMMN201

UG 2nd - Semester Examination - 2025 (Under NCCF)

Award: B.Sc. Discipline: CHEMISTRY

Course Type: Minor
Course Code: BSCCEMMN201
Course Name: General Chemistry-I

Full Marks - 35 Time - 2 hrs

1. Answer any five questions:

 $1\times5=5$

- a) Find the dimension of viscosity coefficient η .
- b) Find the oxidation state of oxygen in F_2O .
- c) Give an example of basic buffer.
- d) Write the van der Waal's equation of state for real gas.
- e) What is the molecularity of the reaction $2NO + O_2 \rightarrow 2NO_2$?
- f) Write the expression of half-life for a first order reaction.
- g) What is the SI unit of surface tension?
- h) Should an ideal gas have viscosity? Why?

2. Answer any *five* questions:

 $2 \times 5 = 10$

- a) A aqueas solution of KHF_2 can act as buffer–criticize.
- b) Write an equation which describes the relationship between the rate constant of the reaction and the temperature of the system.
- c) What do you mean by the ionic product of water?
- d) What do you mean by atomicity of a gas?
- e) Under what conditions do real gases behave ideally?
- f) What is the pH of 10^{-7} M HCl solution?
- g) What is the potential of a half-cell consisting of zinc electrode in 0.01 M $ZnSO_4$ solution at 25°C, $E^0 = 0.763 \text{ V}$?
- h) Cite one example for each where water can acts as oxidant and where acts as a reductant.

3. Answer any two questions for 2022 Batch :

 $5\times2=10$

- a) i) Why is Zimmermann-Reinhardt's reagent used while titrating iron (II) with permanganate solution?
 - ii) Write the names of components present and describe each of their functions briefly. 2+3
- b) i) Derive the expression of rate constant for a first order reaction.
 - ii) Give an example of pseudo-first order reaction.

4+1

- c) i) Describe the effect of temperature on surface tension.
 - ii) In an experiment with Ostwald viscometer, the times of flow of water and ethanol are 80 secs

and 175 secs at 20° C. The density of water = 0.998 g/cm³ and that of ethanol = 0.790 g/cm³. The vviscocity of water at 20° C is 0.01008 poise. Calculate the viscosity of ethanol.

- d) i) On which factors the rate of zero order reaction depends?
 - ii) The half-life of a first order reaction is 60 min. How long will it take to consume 90% of the reactant?

4. Answer any *one* question:

 $10 \times 1 = 10$

- a) i) Balance the following reaction by ion-electron method in basic medium $MnO_4{}^- + I^- \to MnO_2 + I_2$
 - ii) In what ratios are the most probable speed, average speed and rms speed of a gas related?
 - iii) Write one limitation of Arrhenius concept of acids and bases.
 - iv) What do you mean by buffer capacity?
 - v) Find the unit of rate constant for a zero order reaction.

4+2+1+1+2

- b) i) Write the differences between order and molecularity of a reaction.
 - ii) Show that the time required for the formation of maximum amount of B in the consecutive reaction $A \rightarrow B \rightarrow C$ is independent of the initial concentration of A.
 - iii) What is a complementary redox reaction? Give an example.
 - iv) What is Boyle temperature?

2+4+2+2

